МИНОБРНАУКИ РОССИИ ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ЕН.01 Математика

программы подготовки специалистов среднего звена 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей

Форма обучения: очная

Рабочая программа учебной дисциплины EH.01 Математика разработана в соответствии с требованиями Федерального государственного образовательного стандарта среднего профессионального образования по специальности 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей, утвержденного приказом Минобрнауки России от 09 декабря 2016 г., N 1568, примерной образовательной программой.

Разработчик(и): О.Г.Гурский, преподаватель

Рассмотрено и одобрено на заседании цикловой методической комиссии

Протокол № 9 от «15» апреля 2020 г.

Председатель ЦМК_____

<u>Укуе</u> А.Д. Гусакова

СОДЕРЖАНИЕ

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	5
3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ 11	1
4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	12

1. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

1.1. Место дисциплины в структуре основной образовательной программы

Учебная дисциплина EH.02 Математика является обязательной частью математического и общего естественнонаучного цикла основной образовательной программы в соответствии с ФГОС СПО по специальности 43.02.14 Гостиничное дело.

1.2. Цель и планируемые результаты освоения дисциплины

В рамках программы учебной дисциплины обучающимися осваиваются следующие умения и знания.

	знания.	
Код ОК	Умения	Знания
OK 01	выбирать способы решения задач	знание основных математических
	профессиональной деятельности,	методов решения прикладных задач в
	применительно к различным контекстам	области профессиональной
		деятельности
OK 02	осуществлять поиск, анализ и	знание основных понятий и методов
	интерпретацию информации,	теории комплексных чисел
	необходимой для выполнения задач	
	профессиональной деятельности	
OK 03	планировать и реализовывать	значение математики в
	собственное профессиональное и	профессиональной деятельности и при
	личностное развитие	освоении ППССЗ
OK 04	работать в коллективе и команде,	знание математических понятий и
	эффективно взаимодействовать с	определений, способов доказательства
	коллегами, руководством, клиентами	математическими методами
OK 05	осуществлять устную и письменную	знание математических методов при
	коммуникацию на государственном	решении задач, связанных с будущей
	языке с учетом особенностей	профессиональной деятельностью и
	социального и культурного контекста	иных прикладных задач
OK 06	проявлять гражданско-патриотическую	знание основ дифференциального
	позицию, демонстрировать осознанное	исчисления
	поведение на основе традиционных	
	общечеловеческих ценностей	
OK 07	содействовать сохранению окружающей	знание основ интегрального
	среды, ресурсосбережению, эффективно	исчисления
	действовать в чрезвычайных ситуациях	
OK 08	использовать средства физической	знание основных понятий и методов
	культуры для сохранения и укрепления	линейной алгебры и математического
	здоровья в процессе профессиональной	анализа
	деятельности и поддержания	
	необходимого уровня физической	
OTC 00	подготовленности	
OK 09	использовать информационные	знание математического анализа
	технологии в профессиональной	информации, представленной
OTC 10	деятельности	различными способами
ОК 10	пользоваться профессиональной	знание методов построения графиков
	документацией на государственном и	различных процессов
OTC 11	иностранном языках	
ОК 11	контролировать текущую деятельность	знание экономико-математических
	работников службы приема и	методов, взаимосвязи основ высшей

размещения для поддержания	математики с экономикой и
требуемого уровня качества	спецдисциплинами

В рамках программы учебной дисциплины у обучающихся формируются следующие профессиональные компетенции (ПК):

- ПК 1.1. Осуществлять диагностику систем, узлов и механизмов автомобильных двигателей
- ПК 1.2. Осуществлять техническое обслуживание автомобильных двигателей согласно технологической документации.
- ПК 1.3. Проводить ремонт различных типов двигателей в соответствии с технологической документацией
- ПК 2.1. Осуществлять диагностику электрооборудования и электронных систем автомобилей.
- ПК 2.2. Осуществлять техническое обслуживание электрооборудования и электронных систем автомобилей согласно технологической документации
- ПК 2.3. Проводить ремонт электрооборудования и электронных систем автомобилей в соответствии
- ПК 3.1. Осуществлять диагностику трансмиссии, ходовой части и органов управления автомобилей.
- ПК 3.2. Осуществлять техническое обслуживание трансмиссии, ходовой части и органов управления автомобилей согласно технологической документации.
- ПК 3.3. Проводить ремонт трансмиссии, ходовой части и органов управления автомобилей в соответствии с технологической документацией
- ПК 4.1.Выявлять дефекты автомобильных кузовов.
- ПК 4.2. Проводить ремонт повреждений автомобильных кузовов.
- ПК 4.3. Проводить окраску автомобильных кузовов.
- ПК 5.1 Планировать деятельность подразделения по техническому обслуживанию и ремонту систем, узлов и двигателей.
- ПК 5.2 Организовывать материально-техническое обеспечение процесса по техническому обслуживанию и ремонту автотранспортных средств.
- ПК 5.3. Осуществлять организацию и контроль деятельности персонала подразделения по техническому обслуживанию и ремонту автотранспортных средств.
- ПК 5.4. Разрабатывать предложения по совершенствованию деятельности подразделения по техническому обслуживанию и ремонту автотранспортных средств.
- ПК 6.1.Определять необходимость модернизации автотранспортного средства.
- ПК 6.2. Планировать взаимозаменяемость узлов и агрегатов автотранспортного средства и повышение их эксплуатационных свойств.
- ПК 6.3.Владеть методикой тюнинга автомобиля.
- ПК 6.4. Определять остаточный ресурс производственного оборудования

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов	
Объем образовательной программы учебной дисциплины	72	
в том числе:		
 теоретическое обучение 	33	
практические занятия	33	
консультации	3	
– самостоятельная работа	3	
 промежуточная аттестация – дифференцированный зачёт 		

2.2. Тематический план и содержание учебной дисциплины

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем в часах
1	2	3
	Раздел 1. Основные понятия комплексных чисел	4
Тема 1.1.	Содержание учебного материала	
Комплексные числа	1.Определение комплексного числа в алгебраической форме, действия над ними.	
и действия над	2. Геометрическое изображение комплексных чисел.	4
ними	3. Модуль и аргументы комплексного числа.	
	4. Решение алгебраических уравнений.	
	В том числе, практических занятий	2
	1. Практическое занятие «Решение задач с комплексными числами. Геометрическая интерпретация комплексного числа».	2
	Раздел 2. Элементы линейной алгебры	27
Тема 2.1. Матрицы	1. Матрицы Содержание учебного материала	
и определители	1. Экономико-математические методы.	9
	2. Матричные модели.	,
	3. Матрицы и действия над ними.	
	4. Определитель матрицы.	
	В том числе, практических занятий	4
	1. Практическое занятие «Выполнение действий над матрицами».	2
	2. Практическое занятие «Нахождение определителей второго и третьего порядков».	2
	Самостоятельная работа обучающихся	
	Сложение и вычитание матриц, умножение матрицы на число, умножение матрицы	0,5
	на матрицу, транспонирование матриц, нахождение обратных матриц и	0,5
	определителей матриц.	
Тема 2.2. Методы	Содержание учебного материала	
решения систем	1. Метод Гаусса.	
линейных	2. Правило Крамера.	
уравнений	3. Метод обратной матрицы.	

	В том числе, практических занятий		
	1. Практическое занятие «Решение систем методом Гаусса (метод исключения		
	неизвестных)».		
	2. Практическое занятие «Решение систем по формулам Крамера (для систем		
	линейных уравнений с тремя неизвестными)».		
	3. Практическое занятие «Решение систем матричным методом».	2	
	Самостоятельная работа обучающихся		
	Решение систем линейных уравнений методом Гаусса, по правилу Крамера и	0,5	
	методом обратной матрицы.		
Тема 2.3.	Содержание учебного материала		
Моделирование и	1. Математические модели.		
решение задач	2. Задачи на практическое применение математических моделей.	5	
линейного	3. Общая задача линейного программирования.		
программирования	4. Матричная форма записи.		
	В том числе, практических занятий	2	
	1. Практическое занятие «Решение задач линейного программирования	2	
	графическим методом».		
	Самостоятельная работа обучающихся		
	Решение задач линейного программирования графическим методом		
	Раздел 3. Введение в анализ	4	
Т 2 1 . Т	Содержание учебного материала		
Тема 3.1. Функции	1 1		
тема 5.1. Функции многих переменных	1. Функции двух и нескольких переменных, способы задания, символика, область	2	
многих переменных	1. Функции двух и нескольких переменных, способы задания, символика, область определения.	2	
многих переменных Тема 3.2. Пределы и	1. Функции двух и нескольких переменных, способы задания, символика, область определения. Содержание учебного материала	2	
многих переменных	1. Функции двух и нескольких переменных, способы задания, символика, область определения. Содержание учебного материала 1. Предел функции.	2	
многих переменных Тема 3.2. Пределы и	1. Функции двух и нескольких переменных, способы задания, символика, область определения. Содержание учебного материала 1. Предел функции. 2. Бесконечно малые функции.		
многих переменных Тема 3.2. Пределы и	Функции двух и нескольких переменных, способы задания, символика, область определения. Содержание учебного материала Предел функции. Бесконечно малые функции. Метод эквивалентных бесконечно малых величин.	2	
многих переменных Тема 3.2. Пределы и	 Функции двух и нескольких переменных, способы задания, символика, область определения. Содержание учебного материала Предел функции. Бесконечно малые функции. Метод эквивалентных бесконечно малых величин. Раскрытие неопределённости вида 0/0 и ∞/∞. 		
многих переменных Тема 3.2. Пределы и	 Функции двух и нескольких переменных, способы задания, символика, область определения. Содержание учебного материала Предел функции. Бесконечно малые функции. Метод эквивалентных бесконечно малых величин. Раскрытие неопределённости вида 0/0 и ∞/∞. Замечательные пределы. 		
многих переменных Тема 3.2. Пределы и	 Функции двух и нескольких переменных, способы задания, символика, область определения. Содержание учебного материала Предел функции. Бесконечно малые функции. Метод эквивалентных бесконечно малых величин. Раскрытие неопределённости вида 0/0 и ∞/∞. Замечательные пределы. Непрерывность функции. 	2	
многих переменных Тема 3.2. Пределы и непрерывность	 Функции двух и нескольких переменных, способы задания, символика, область определения. Содержание учебного материала Предел функции. Бесконечно малые функции. Метод эквивалентных бесконечно малых величин. Раскрытие неопределённости вида 0/0 и ∞/∞. Замечательные пределы. Непрерывность функции. Раздел 4. Дифференциальные исчисления 		
многих переменных Тема 3.2. Пределы и непрерывность Тема 4.1.	 Функции двух и нескольких переменных, способы задания, символика, область определения. Содержание учебного материала Предел функции. Бесконечно малые функции. Метод эквивалентных бесконечно малых величин. Раскрытие неопределённости вида 0/0 и ∞/∞. Замечательные пределы. Непрерывность функции. Раздел 4. Дифференциальные исчисления Содержание учебного материала 	2	
многих переменных Тема 3.2. Пределы и непрерывность Тема 4.1. Производная и	 Функции двух и нескольких переменных, способы задания, символика, область определения. Содержание учебного материала Предел функции. Бесконечно малые функции. Метод эквивалентных бесконечно малых величин. Раскрытие неопределённости вида 0/0 и ∞/∞. Замечательные пределы. Непрерывность функции. Раздел 4. Дифференциальные исчисления Содержание учебного материала Производная функции. 	6	
многих переменных Тема 3.2. Пределы и непрерывность Тема 4.1.	 Функции двух и нескольких переменных, способы задания, символика, область определения. Содержание учебного материала Предел функции. Бесконечно малые функции. Метод эквивалентных бесконечно малых величин. Раскрытие неопределённости вида 0/0 и ∞/∞. Замечательные пределы. Непрерывность функции. Раздел 4. Дифференциальные исчисления Содержание учебного материала 	2	

	4. Производные и дифференциалы высших порядков.		
	 троизводные и дифференциалы высших порядков. Возрастание и убывание функций. 		
	6. Экстремумы функций.		
	7. Частные производные функции нескольких переменных. 8. Полный дифференциал.		
	9. Частные производные высших порядков.	2	
	В том числе, практических занятий	2	
	1. Практическое занятие «Нахождение экстремумов функции нескольких переменных».	2	
Pa ₃ ;	дел 5. Интегральное исчисление и дифференциальные уравнения	31	
Тема 5.1.	Содержание учебного материала		
Неопределённый	1. Первообразная функция и неопределённый интеграл.	10	
интеграл	2. Основные правила неопределённого интегрирования.		
•	В том числе, практических занятий	6	
	1. Практическое занятие «Нахождение неопределённого интеграла с помощью		
	таблиц, а также используя его свойства».	2	
	2. Практическое занятие «Интегрирование методом замены переменной и	2	
	интегрирование по частям».	2	
	3. Практическое занятие «Интегрирование простейших рациональных дробей».	2	
	Самостоятельная работа обучающихся	0.5	
	Интегрирование функций одной вещественной переменной.	0,5	
Тема 5.2.	Содержание учебного материала		
Определённый	1. Задача нахождения площади криволинейной трапеции.		
интеграл	2. Определённый интеграл.		
	3. Формула Ньютона-Лейбница.		
	4. Основные свойства определённого интеграла.		
	В том числе, практических занятий	2	
	1. Практическое занятие «Интегрирование по правилу замены переменной и	2	
	интегрирование по частям».	4	
Тема 5.3.	Содержание учебного материала		
Несобственный	1. Интегрирование неограниченных функций.		
интеграл	2. Интегрирование по бесконечному промежутку.		
	В том числе, практических занятий	4	
	1. Практическое занятие «Вычисление несобственных интегралов. Исследование	2	
	сходимости (расходимости) интегралов».	_	

	2. Практическое занятие «Применение интегрального исчисления».	2
	Самостоятельная работа обучающихся	
	Вычисление площади плоской фигуры, длины кривой, объёма и площади тел	0,5
	вращения.	
Тема 5.4.	Содержание учебного материала	
Дифференциальные	1. Примеры задач, приводящих к дифференциальным уравнениям.	10
уравнения	2. Основные понятия и определения.	
	В том числе, практических занятий	5
	1. Практическое занятие «Решение дифференциальных уравнений первого порядка и первой степени».	2
	2. Практическое занятие «Решение уравнения с разделяющимися переменными».	2
	3. Практическое занятие «Решение однородных дифференциальных уравнений».	1
	Самостоятельная работа обучающихся Решение дифференциальных уравнений первого порядка и первой степени, уравнений с разделяющимися переменными, а также однородных дифференциальных уравнений.	0,5
Консультации		3
Промежуточная атте	стация (дифференцированный зачёт)	
Всего:		72

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ.

3.1. Для реализации программы учебной дисциплины образовательной организацией предусмотрено наличие следующих специальных помещений:

Кабинет математики

Основное оборудование: Доска подкатная; Мультимедийный комплект (проектор Casio XJ-V2, экран Lumien Eco Picture); Парты ученические двойные; Стол преподавателя; Стулья.

Программное обеспечение: 1. Microsoft Windows 7 Professional (ООО "Пасифик Компьютеры Груп", ГК №55 от 03.05.2011 г., лицензия №48467770 от 06.05.2011 г.). 2. Microsoft Office ProPlus 2010 Russian Acdmc (ООО "Пасифик Компьютеры Груп", ГК №254 от 01.11.2010 г., лицензия №47549521 от 15.10.2010 г., бессрочно). 3. MatLab Concurrent Academic Perpetual R2014b в составе: MatLab, Simulink, Image Processing Toolbox, Symbolic Math Toolbox (ООО "Битроникс", контракт №0320100030814000018-45081 от 09.09.2014 г., лицензия №980095 от 26.09.2014 г., бессрочно). 4. Google Chrome (свободное).

3.2. Информационное обеспечение реализации программы

Для реализации программы учебной дисциплины библиотечный фонд образовательной организации укомплектован печатными и электронными изданиями.

Основная литература

- 1. Башмаков М. И. Математика: учебник для учреждений нач. и сред. проф. образования/ М. И. Башмаков. 9-е изд., стер. М.: Издательский центр «Академия», 2017. 256 с.
- 2. Григорьев С. Г. Математика: учебник для студ. образоват. учреждений сред. проф. образования / С. Г. Григорьев, С. В. Иволгина; под ред. В. А. Гусева. 11-е изд., стер. М.: Издательский центр «Академия», 2017. 416 с.
- 3. Богомолов, Н. В. Математика : учебник для СПО / Н. В. Богомолов, П. И. Самойленко. 5-е изд., пер. и доп. М. : Издательство Юрайт, 2016. 396 с. (Серия : Профессиональное образование)..
- 4. Богомолов, Н. В. Практические занятия по математике: учебное пособие для СПО / Н. В. Богомолов. 11-е изд., пер. и доп. М.: Издательство Юрайт, 2017. 495 с. (Серия: Профессиональное образование).
- 5. Богомолов, Н. В. Практические занятия по математике в 2 ч. Часть 1 : учебное пособие для СПО / Н. В. Богомолов. 11-е изд., пер. и доп. М. : Издательство Юрайт, 2018. 326 с. (Серия : Профессиональное образование).
- 6. Богомолов, Н. В. Практические занятия по математике в 2 ч. Часть 2 : учебное пособие для СПО / Н. В. Богомолов. 11-е изд., пер. и доп. М. : Издательство Юрайт, 2018. 251 с. (Серия : Профессиональное образование).
- 7. Тишин В. В. Дискретная математика в примерах и задачах Сант-Петербург.: БХВ-Петербург, 2016.

Дополнительная литература

- 1. Выгодский М. Я. Справочник по элементарной математике. М.: АСТ, 2016.
- 2. Математика ЕГЭ 2017-2018, АСТ-Астрель, Москва, ФИПИ.
- 3. Математика ЕГЭ 2018. АСТ-Астрель, Москва, ФИПИ, 2017.
- 4. Кремер, Н. Ш. Высшая математика для экономического бакалавриата : учебник и практикум / Н. Ш. Кремер ; под ред. Н. Ш. Кремера. 5-е изд., пер. и доп. М. : Издательство Юрайт, 2017..
- 5. Спирина М. С. Дискретная математика: учеб. 11-е изд., пер. и доп. М.: Академия, 2016.
- 6. Туганбаев, А.А. Математический анализ: интегралы : учеб. пособие / А.А. Туганбаев .— 3-е изд., стер. М. : ФЛИНТА, 2017 .— 76 с.
- 7. Высшая математика : учебник и практикум для СПО / М. Б. Хрипунова [и др.] ; под общ. ред. И. И. Цыганок. М. : Издательство Юрайт, 2018. 472 с.
- 8. Баврин, И. И. Математика для технических колледжей и техникумов : учебник и практикум для СПО / И. И. Баврин. 2-е изд., испр. и доп. М. : Издательство Юрайт, 2017. 329 с. (Серия : Профессиональное образование).

- 9. Математика. Практикум : учебное пособие для СПО. / под общ. ред. О. В. Татарникова. М. : Издательство Юрайт, 2018. 285 с. Серия : Профессиональное образование.
- 10. Математика : учебник для СПО / под общ. ред. О. В. Татарникова. М. : Издательство Юрайт, 2018. 450 с. Серия : Профессиональное образование.
- 11. Элементы линейной алгебры: учебник и практикум для СПО / О. В. Татарников, А. С. Чуйко, В. Г. Шершнев; под общ. ред. О. В. Татарникова М.: Издательство Юрайт, 2019. 334 с. (Серия: Профессиональное образование).
- 12. Математика : учебник для студ. учреждений сред. проф. Образования / И. Д. Пехлецкий. 11-е изд., перераб. и доп. М. : Издательский центр «Академия», 2017. 320 с.

Электронные ресурсы

- 1 Электронный каталог Библиотеки МосГУ. Режим доступа: http://elib.mosgu.ru
- 2 Сайт для помощи студентам, желающим самостоятельно изучать и сдавать экзамены по высшей математике, и помощи преподавателям в подборке материалов к занятиям и контрольным работам. Режим доступа: http://mathportal.net/
- 3 Файловый архив студентов. Режим доступа: https://studfiles.net/
- 4 Формулы, уравнения, теоремы, примеры решения задач. <u>Режим доступа:</u> http://matematika.electrichelp.ru/matricy-i-opredeliteli/
- 5 Материалы по математике для самостоятельной подготовки. <u>Режим доступа:</u> http://www.mathprofi.ru/
- 6 Изучение математики онлайн. Режим доступа: https://ru.onlinemschool.com/math/library/
- 7. Банк рефератов. Режим доступа: https://www.bestreferat.ru/
- 8 Доступная математика. Режим доступа: http://www.cleverstudents.ru/
- 9 Собрание учебных онлайн калькуляторов, теории и примеров решения задач. <u>Режим доступа: http://ru.solverbook.com/</u>
- 10 Справочный портал. Режим доступа: https://www.calc.ru/

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Результаты	Критерии оценки	Методы оценки
обучения		
знание	1) знает определение комплексного числа в	Оценка результатов
основных	алгебраической форме, действия над ними;	выполнения
математическ	2) знает, как геометрически изобразить	практических работ.
их методов	комплексное число;	Оценка результатов
решения	3) знает, что представляет собой модуль и	устного и письменного
прикладных	аргумент комплексного числа;	опроса.
задач в	4) знает, как найти площадь криволинейной	Оценка результатов
области	трапеции;	самостоятельной
профессиона	5) знает, что называется определённым	работы.
льной	интегралом;	Оценка результатов
деятельности	б) знает формулу Ньютона-Лейбница;	выполнения домашних
;	7) знает основные свойства определённого	заданий.
	интеграла;	Оценка результатов
	8) знает правила замены переменной и	проведённого
	интегрирование по частям;	дифференцированного
	9) знает, как интегрировать неограниченные	зачёта.
	функции;	
	10) знает, как интегрировать по	
	бесконечному промежутку;	

	11)	
	11) знает, как вычислять несобственные	
	интегралы;	
	12) знает, как исследовать сходимость	
	(расходимость) интегралов;	
знание	1) знает определение комплексного числа в	Оценка результатов
основных	алгебраической форме, действия над ними;	выполнения
понятий и	2) знает, как геометрически изобразить	практических работ.
методов	комплексное число;	Оценка результатов
теории	3) знает, что представляет собой модуль и	устного и письменного
-	· · · · · · · · · · · · · · · · · · ·	
комплексных	аргумент комплексного числа;	опроса.
чисел,	4) знает экономико-математические методы;	Оценка результатов
линейной	5) знает, что представляют собой матричные	самостоятельной
алгебры,	модели;	работы.
математическ	6) знает определение матрицы и действия над	Оценка результатов
ого анализа;	ними;	выполнения домашних
	7) знает, что представляет собой	заданий.
	определитель матрицы;	Оценка результатов
	8) знает, что такое определитель второго и	проведённого
	третьего порядка;	дифференцированного
	9) знает задачи, приводящие к	зачёта.
	дифференциальным уравнениям;	30 13 10.
	10) знает основные понятия и определения	
	дифференциальных уравнений;	
DYVOYYOYYYA	1 1 1 V 1	Overview memory
значения	1) знает метод Гаусса, правило Крамера и	Оценка результатов
математики в	метод обратной матрицы;	выполнения
профессиона	2) знает, что представляет собой	практических работ.
льной	первообразная функция и неопределённый	Оценка результатов
деятельности	интеграл;	устного и письменного
;	3) знает основные правила неопределённого	опроса.
	интегрирования;	Оценка результатов
	4) знает, как находить неопределённый	самостоятельной
	интеграл с помощью таблиц, а также	работы.
	используя его свойства;	Оценка результатов
	5) знает в чём заключается метод замены	выполнения домашних
	переменной и интегрирования по частям;	заданий.
	6) знает, как интегрировать простейшие	Оценка результатов
	рациональные дроби;	проведённого
		дифференцированного
		зачёта.
знание	1) знает метод Гаусса, правило Крамера и	Оценка результатов
математическ	метод обратной матрицы;	выполнения
их понятий и	2) знает задачи, приводящие к	практических работ.
определений,	дифференциальным уравнениям;	
способов	дифференциальным уравнениям, 3) знает основные понятия и определения	1 .
	*	устного и письменного
доказательст	дифференциальных уравнений;	опроса.
ва	4) знает определение предела функции;	Оценка результатов
математическ	5) знает определение бесконечно малых	самостоятельной
ИМИ	функций;	работы.
методами;	6) знает метод эквивалентных бесконечно	Оценка результатов
	малых величин;	выполнения домашних
	·	, ,
	7) знает, как раскрывать неопределённость	заданий.
	·	

	10) 1	
	10) знает, как задавать функции двух и	
	нескольких переменных, символику, область	
	определения;	
знание	1) знает экономико-математические методы;	Оценка результатов
экономико-	2) знает, что представляют собой матричные	_
математическ	модели;	практических работ.
их методов,	3) знает определение матрицы и действия над	
взаимосвязи	ними;	устного и письменного
основ	4) знает, что представляет собо	_ *
высшей	определитель матрицы;	Оценка результатов
математики с	5) знает, что такое определитель второго и	самостоятельной
экономикой и	третьего порядка;	работы.
дисциплинам	б) знает, что представляет собо	1 0
И	математическая модель;	выполнения домашних
общепрофесс	7) знает как практически применят	
ионального	математические модели при решени	
цикла;	различных задач;	проведённого
	8) знает общую задачу линейног	111
	программирования;	зачёта.
	9) знает матричную форму записи;	
	10) знает графический метод решени	R
	задачи линейного программирования;	
	11) знает, что представляет собо	й
	первообразная функция и неопределённый	
	интеграл;	
	12) знает основные правил	ia
	неопределённого интегрирования;	
	13) знает, как находить неопределённый	
	интеграл с помощью таблиц, а такж	re
	используя его свойства;	
	14) знает в чём заключается метод замень	I
	переменной и интегрирования по частям;	
	15) знает, как интегрировать простейшие	
	рациональные дроби;	
Перечень умен	ий, осваиваемых в рамках дисциплины	
умение	1) умение решать алгебраические	Оценка результатов
решать	уравнения с комплексными числами;	выполнения практических
прикладные	2) умение решать задачи с комплексными	работ.
задачи в	числами;	Оценка результатов
области	3) умение геометрически	устного и письменного
профессиона	интерпретировать комплексное число;	опроса.
льной	4) умение находить площадь	Оценка результатов
деятельности	криволинейной трапеции;	самостоятельной работы.
;	5) умение находить определённый	Оценка результатов
	интеграл используя основные свойства,	выполнения домашних
	правила замены переменной и	заданий.
	интегрирования по частям;	Оценка результатов
	б) умение вычислять несобственные	проведённого
	интегралы;	дифференцированного
	7) умение исследовать сходимость	зачёта.
	(расходимость) интегралов;	
	(Passiogramosts) initial passos,	

быстрота и	1) умение решать алгебраические	Оценка результатов
точность	уравнения с комплексными числами;	выполнения практических
поиска,	2) умение решать задачи с комплексными	работ.
оптимальнос	числами;	Оценка результатов
ть и	3) умение геометрически	устного и письменного
научность	интерпретировать комплексное число;	опроса.
необходимой	4) умение составлять матрицы и выполнять	Оценка результатов
информации,	действия над ними;	самостоятельной работы.
а также	5) умение вычислять определитель	Оценка результатов
обоснованно	матрицы;	выполнения домашних
сть выбора	б) умение решать задачи при помощи	заданий.
применения	дифференциальных уравнений;	Оценка результатов
современных	7) умение решать дифференциальные	проведённого
технологий	уравнения первого порядка и первой	дифференцированного
её обработки;	степени;	зачёта.
or separation,	8) умение решать дифференциальные	30.12101
	уравнения с разделяющимися	
	переменными;	
	9) умение решать однородные	
	дифференциальные уравнения;	
организовыва	1) умение решать системы линейных	Оценка результатов
ТЬ	уравнений методом Гаусса, правилом	выполнения практических
самостоятель	Крамера и методом обратной матрицы;	работ.
ную работу	2) умение находить неопределённый	Оценка результатов
при освоении	интеграл с помощью таблиц, а также	устного и письменного
профессиона	используя его свойства;	опроса.
льных	3) умение вычислять неопределённый	Оценка результатов
компетенций	интеграл методом замены переменной и	самостоятельной работы.
; стремиться	интегрирования по частям;	Оценка результатов
К	4) умение интегрировать простейшие	выполнения домашних
самообразова	рациональные дроби;	заданий.
нию и	рациональные дроон,	Оценка результатов
повышению		проведённого
профессиона		дифференцированного
льного		зачёта.
уровня;		34-014.
умело и	1) умение решать системы линейных	Оценка результатов
эффективно	уравнений методом Гаусса, правилом	выполнения практических
работает в	Крамера и методом обратной матрицы;	работ.
коллективе,	2) умение решать задачи при помощи	Оценка результатов
соблюдает	дифференциальных уравнений;	- ·
профессиона	дифференциальных уравнении, 3) умение решать дифференциальные	устного и письменного опроса.
льную этику;	уравнения первого порядка и первой	Оценка результатов самостоятельной работы.
	степени;	_
	4) умение решать дифференциальные	Оценка результатов
	уравнения с разделяющимися	выполнения домашних
	переменными;	Заданий.
	5) умение решать однородные	Оценка результатов
	дифференциальные уравнения;	проведённого
		дифференцированного
		зачёта.

	1)	
умение ясно,	1) умение составлять матрицы и выполнять	Оценка результатов
чётко,	действия над ними;	выполнения практических
однозначно	2) умение вычислять определитель	работ.
излагать	матрицы;	Оценка результатов
математическ	3) умение находить площадь	устного и письменного
ие факты, а	криволинейной трапеции;	опроса.
также	4) умение находить определённый	Оценка результатов
рассматриват	интеграл используя основные свойства,	самостоятельной работы.
Ь	правила замены переменной и	Оценка результатов
профессиона	интегрирования по частям;	выполнения домашних
льные		заданий.
проблемы,		Оценка результатов
используя		проведённого
математическ		дифференцированного
ий аппарат;		зачёта.
умение	1) знает, что представляет собой	Оценка результатов
рационально	математическая модель;	выполнения практических
и корректно	2) знает, как практически применять	работ.
использовать	математические модели при решении	Оценка результатов
информацио	различных задач;	устного и письменного
нные	3) знает общую задачу линейного	опроса.
ресурсы в	программирования;	Оценка результатов
профессиона	4) знает матричную форму записи;	самостоятельной работы.
льной и	5) знает графический метод решения	Оценка результатов
учебной	задачи линейного программирования;	выполнения домашних
деятельности	6) умение вычислять несобственные	заданий.
	интегралы;	Оценка результатов
,	умение исследовать сходимость	проведённого
	(расходимость) интегралов;	дифференцированного
	(расходимость) интегралов,	зачёта.
умение	1) умение составлять матрицы и выполнять	Оценка результатов
обоснованно	действия над ними;	выполнения практических
		<u> </u>
и адекватно	2) умение вычислять определитель	работ. Оценка результатов
применять	матрицы;	1 .
методы и	3) знает, что представляет собой	устного и письменного
способы	математическая модель;	опроса.
решения	4) знает, как практически применять	Оценка результатов
задач в	математические модели при решении	самостоятельной работы.
профессиона	различных задач;	Оценка результатов
льной	5) знает общую задачу линейного	выполнения домашних
деятельности	программирования;	заданий.
;	6) знает матричную форму записи;	Оценка результатов
	7) знает графический метод решения	проведённого
	задачи линейного программирования;	дифференцированного
	8) умение находить неопределённый	зачёта.
	интеграл с помощью таблиц, а также	
	используя его свойства;	
	9) умение вычислять неопределённый	
	интеграл методом замены переменной и	
	интегрирования по частям;	
	умение интегрировать простейшие	
	рациональные дроби.	

МИНОБРНАУКИ РОССИИ ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА

КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА

для проведения текущего контроля и промежуточной аттестации по учебной дисциплине

ЕН.01 Математика

программы подготовки специалистов среднего звена 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей

Форма обучения: очное

Контрольно-оценочные средства для проведения текущего контроля и промежуточной аттестации по учебной дисциплине ЕН.01 Математика разработаны в соответствии с требованиями ФГОС СПО по специальности 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей, утвержденного приказом Минобрнауки РФ от 09 декабря 2016 г., №1568, примерной образовательной программой, рабочей программой учебной дисциплины.

Разработчик(и): О.Г. Гурский, преподаватель

Рассмотрено и одобрено на заседании цикловой методической комиссии

Протокол № 9 от «15» апреля 2020 г.

Председатель ЦМК Учений Да.Д. Гусакова подпись

1 Общие сведения

Контрольно-оценочные средства (далее – КОС) предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины Математика.

КОС разработаны на основании:

- основной образовательной программы СПО по специальности 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей
- рабочей программы учебной дисциплины ЕН.02 Математика.

Формой итоговой аттестации является экзамен.

Код ОК, ПК	Код результата обучения	Наименование
OK 01 OK 02	У1	Умение решать задачи линейной алгебры.
OK 03	У2	Умение решать задачи математического анализа.
OK 04 OK 05 OK 06 OK 07 OK 08 OK 09 OK 10 OK 11	У3	Умение решать вероятностные и статистические задачи.
	31	Знание основных методов математического анализа, линейной алгебры, элементарной теории вероятностей
	OK 09 OK 10 32	Знание математических моделей простейших систем и процессов в естествознании и технике

2 Распределение типов контрольных заданий по элементам знаний и умений, контролируемых в процессе изучения

Код	Содержание учебного материала (темы)	Вид оценочного средства		
резуль- тата обучения		Текущий кон- троль	Промежуточ- ная аттеста- ция	
У1	Тема 1.1. Определители и матрицы Тема 1.2. Системы линейных уравнений	Контрольная ра- бота	Собеседование	
У2	Тема 2.1. Пределы Тема 3.1. Неопределенные интегралы Тема 3.2. Определенные интегралы	Контрольная ра- бота	Собеседование	
У3	Тема 4.1. Предмет теория вероятностей. Основные понятия и определения Тема 4.2. Случайные величины Тема 4.3. Математическая статистика	Контрольная ра- бота	Собеседование	
31	Тема 1.1. Определители и матрицы Тема 1.2. Системы линейных уравнений Тема 2.1. Пределы Тема 3.1. Неопределенные интегралы Тема 4.1. Предмет теория вероятностей. Основные понятия и определения	Контрольная ра- бота	Собеседование	
32	Тема 3.2. Определенные интегралы Тема 4.2. Случайные величины	Контрольная ра- бота	Собеседование	

Код резуль- тата обучения	Содержание учебного материала (темы)	Вид оценочного средства	
		Текущий кон- троль	Промежуточ- ная аттеста- ция
	Тема 4.3. Математическая статистика		

3 Структура банка контрольных заданий для текущего контроля и промежуточной аттестации

Тип контрольного задания	Количество контрольных заданий (вариантов)	Общее время выполнения обучающим- ся контрольный заданий	
Текущий контроль			
Контрольная работа №1 Матрицы и определители	3 (4 варианта)	60	
Контрольная работа №2 Решение систем линейных уравнений	1 (20 вариантов)	60	
Контрольная работа №3 Вычисление пределов	5 (29 вариантов)	60	
Контрольная работа №4 Интегрирование	5 (30 вариантов)	60	
Контрольная работа №5 Случайные величины и теория вероятностей	7 (20 вариантов)	60	
Промежуточная аттестация			
Собеседование	25	30	

4 Структура контрольных заданий

4.1 Контрольная работа №1 «Матрицы и определители»

1 вариант

1. Найдите произведение матриц АВ

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 \\ 1 & -3 \\ 4 & 5 \end{pmatrix}.$$

$$\begin{bmatrix} 3 & 3 & 2 \\ 5 & 3 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

3. Найдите матрицу, обратную к данной:
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & -1 & 2 \\ 2 & 4 & -5 \end{pmatrix}$$
.

1. Найдите произведение матриц АВ

$$A = \begin{pmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 \\ 1 & -3 \\ 4 & 5 \end{pmatrix}.$$

3. Найдите матрицу, обратную к данной:
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 1 & -2 \\ 2 & -4 & 5 \end{bmatrix}$$
.

3 вариант

1. Найдите произведение матриц АВ

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} -2 & 1 \\ 3 & -1 \\ 5 & 4 \end{pmatrix}.$$

3. Найдите матрицу, обратную к данной:
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & -1 \\ 2 & -5 & 4 \end{bmatrix}$$

4 вариант

1. Найдите произведение матриц АВ

$$A = \begin{pmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} -2 & 1 \\ 3 & -1 \\ 5 & 4 \end{pmatrix}.$$

 $\begin{bmatrix} 2 & B$ ычислите определитель $\begin{bmatrix} 4 & 1 & 2 \\ 1 & 3 & -5 \\ 8 & -1 & 7 \end{bmatrix}$.

4.2 Контрольная работа №2 «Решение систем линейных уравнений»

Задачи 21-40

Решить систему линейных уравнений: 1) методом Крамера; 2) Методом Гаусса; 3) матричным методом.

21.
$$\begin{cases} 2x - y + 3z = 1\\ 3y - 2z = 4\\ 5x - 4y + 8z = 2 \end{cases}$$

26.
$$\begin{cases} 3x + 2y + z = 0 \\ 2x - y + z = 0 \\ x + 5y = -3 \end{cases}$$

31.
$$\begin{cases} 3x + 5y + 7z = 1\\ 2x - y = 2\\ 4x + 3y + 2z = - \end{cases}$$

36.
$$\begin{cases} x + 3y + z = 2\\ 2x + 4z = 1\\ x + 2y + 3z = 3 \end{cases}$$

22.
$$\begin{cases} 5y - z = 2\\ x + y + 4z = 1\\ 3x + 2y + z = 0 \end{cases}$$

27.
$$\begin{cases} 5x - y = 1 \\ 3x + 2y + 3z = 0 \\ 4x - z = 0 \end{cases}$$

32.
$$\begin{cases} 2x - 3y + 3z = -10 \\ x + 3y - 3z = 13 \\ x + z = 0 \end{cases}$$

37.
$$\begin{cases} x + 2y - 3z = 1\\ y - 2z = 10\\ 4x - y + z = 2 \end{cases}$$

3) Матричным методом.

21.
$$\begin{cases} 2x - y + 3z = 1 \\ 3y - 2z = 4 \end{cases}$$
26.
$$\begin{cases} 3x + 2y + z = 1 \\ 2x - y + z = 6 \end{cases}$$
31.
$$\begin{cases} 3x + 5y + 7z = 1 \\ 2x - y = 2 \end{cases}$$
36.
$$\begin{cases} x + 3y + z = 2 \\ 2x + 4z = 1 \\ x + 2y + 3z = 3 \end{cases}$$
22.
$$\begin{cases} 5y - z = 2 \\ x + y + 4z = 1 \\ 3x + 2y + z = 0 \end{cases}$$
27.
$$\begin{cases} 5x - y = 1 \\ 3x + 2y + 3z = 0 \\ 4x - z = 0 \end{cases}$$
28.
$$\begin{cases} 3x + 5y - 7z = 1 \\ 2x - y = 2 \end{cases}$$
29.
$$\begin{cases} 3x + 5y - 7z = 1 \\ 2x - y = 2 \end{cases}$$
21.
$$\begin{cases} 3x + 5y - 7z = 1 \\ 2x - y = 2 \end{cases}$$
22.
$$\begin{cases} 3x + 5y - 7z = 1 \\ 2x - y = 2 \end{cases}$$
23.
$$\begin{cases} 3x + 5y - 7z = 1 \\ 2x - y = 2 \end{cases}$$
24.
$$\begin{cases} 3x + 5y - 7z = 1 \\ 2x - y = 2 \end{cases}$$
25.
$$\begin{cases} 3x + 5y - 7z = 1 \\ 2x - y = 2 \end{cases}$$
26.
$$\begin{cases} 3x - y + z = 1 \\ x + 3y - 3z = 1 \end{cases}$$
27.
$$\begin{cases} 3x + 2y + 2z = 1 \\ x + 3y + z = 2 \end{cases}$$
28.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
29.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
20.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
21.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
22.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
23.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
24.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
25.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
26.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
27.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
28.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
29.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
29.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
20.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
21.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
22.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
23.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
24.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
25.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
26.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
27.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
28.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
29.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
29.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
29.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
29.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
29.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
29.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 1 \end{cases}$$
29.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 4 \end{cases}$$
29.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 4 \end{cases}$$
29.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = 4 \end{cases}$$
20.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y -$$

28.
$$\begin{cases} -y+z=3\\ -x+5y-z=5\\ x-y+3z=1 \end{cases}$$

33.
$$\begin{cases} 3x + 2y + 2z = 1 \\ x + 3y + z = 2 \\ 5x + 3y + 4z = - \end{cases}$$

38.
$$\begin{cases} 3x - y + z = 4 \\ -x + 5y - z = \\ x - y = 2 \end{cases}$$

$$\begin{cases}
5x + 4z = 0 \\
3x + 2y + 5z = -1
\end{cases}$$

$$\begin{cases}
2x + y = 4 \\
x + 2y + z = 3
\end{cases}$$

$$\begin{cases}
2x + y = 4 \\
x + 2y + z = 3
\end{cases}$$

$$\begin{cases}
5x + 4z = 2 \\
-x + 2y + 3z = 3
\end{cases}$$

$$\begin{cases}
2x + y + 3z = 6 \\
x + 5y + z = 1
\end{cases}$$

$$\begin{cases}
3y + 5y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 3z = 6 \\
x + 5y + z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 3z = 6 \\
x + 5y + z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

$$\begin{cases}
x + y + 4z = 1
\end{cases}$$

29.
$$\begin{cases} 2x + y = 4 \\ x + 2y + z = 3 \\ 5x + y + 2z = 1 \end{cases}$$

34.
$$\begin{cases} x + 3y + 4z = 2 \\ -x + 2y + 3z = 3 \\ 2x + y + 2z = -1 \end{cases}$$

39.
$$\begin{cases} x + y + 3z = 6 \\ x + 5y + z = 1 \\ 3x + y + 4z = 4 \end{cases}$$

25.
$$\begin{cases} 2x - 3y + 2z = \\ 3x + y + z = 8\\ x + 2y - z = 2 \end{cases}$$

30.
$$\begin{cases} 2x - 4y + 3z = 1\\ x - 2y + 4z = 3\\ 3x - y + 5z = 2 \end{cases}$$

35.
$$\begin{cases} 2x - y + z = 2\\ 3x + 2y + 2z = -1 \end{cases}$$

25.
$$\begin{cases} 2x - 3y + 2z = 2 \\ 3x + y + z = 8 \\ x + 2y - z = 2 \end{cases}$$
 30.
$$\begin{cases} 2x - 4y + 3z = 1 \\ x - 2y + 4z = 3 \\ 3x - y + 5z = 2 \end{cases}$$
 35.
$$\begin{cases} 2x - y + z = 2 \\ 3x + 2y + 2z = -2 \\ x - 2y + z = 1 \end{cases}$$
 40.
$$\begin{cases} x + 3y + 4z = 2 \\ -x + 2y + 3z = 3 \\ 2x + y + 2z = -1 \end{cases}$$

4.3 Контрольная работа №3 «Вычисление пределов»

Вариант 1

Вычислить пределы

$$\lim_{x \to \infty} \frac{5x^4 - x^3 - 2}{x^4 - 6x + 4}$$
2.
$$\lim_{4x^2 - 7x + 3} \frac{4x^2 - 7x + 3}{x^4 - 6x + 4}$$

$$\lim_{x \to 0} \frac{x}{\sqrt{3} + x - \sqrt{3} - x}$$

$$\lim_{x \to +\infty} \left(\frac{x}{x+3} \right)^{4x+1}$$

$$\lim_{x \to 1} \frac{1}{3x^2 - 2x - 1}$$

4.
$$\lim_{x \to 0} \frac{x \sin 3x}{1 - \cos 2x}$$

Вариант 2

Вычислить пределы

1.

$$\lim_{x \to \infty} \frac{3x^2 + 6x - 1}{(x + 2)(x - 4)}$$
2.
$$\lim_{x \to 8} \frac{x - 8}{3}$$

3.
$$\lim_{x \to 7} \frac{x^2 - 49}{2 - \sqrt{x - 3}}$$

5.
$$\lim_{x \to +\infty} x(\ln x - \ln(x+3))$$

2.
$$\lim_{x \to 2} \frac{x - 8}{2x - 4}$$

4.
$$\lim_{x \to 0} \frac{x^2}{1-\cos 2}$$

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{2x^2 - 5x + 4}{3 - 2x - 5x^2}$$

3.

$$\lim_{x \to 9} \frac{3 - \sqrt{x}}{4 - \sqrt{2x - 2}}$$
4.
$$\lim_{x \to 0} \frac{\sqrt{x + 4} - 2}{\sin 5x}$$

5.
$$\lim_{x \to +\infty} (2x+1)(\ln x - \ln(x+3))$$

Вариант 4 Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{(1-3x)^2}{2+5x-3x^2}$$

2.
$$\lim_{x \to 3} \frac{1}{x^2 - 2x - 3}$$

$x \rightarrow 5 x^2 - 8x + 15$ 4. $\lim_{x \rightarrow 5} \frac{1 - \cos 3x}{1 - \cos 3x}$ $x \rightarrow 0$ 1-cos5x

3. $\lim_{x \to 1} \frac{\sqrt{5-x}-2}{x^2-5x+4}$ 4. $\lim_{x \to 1} \frac{\sqrt{5-x}-2}{x^2}$

 $x \rightarrow 0^{1-\cos 5x}$

5.
$$\lim_{x \to \infty} \left(\frac{3x+4}{3x+1}\right)^{2x-3}$$

Вариант 5

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{2x^3 + 4x - 5}{2 - x - x^3}$$

2.
$$\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 3x + 2}$$

3.
$$\lim_{x \to 1} \frac{x^2 - 6x + 5}{\sqrt{2x + 7} - 3}$$

3. $\lim \sqrt{x+4}-3$

4.
$$\lim_{x \to 0} \frac{\cos 5x - \cos 3x}{\sin^2 2x}$$

5.
$$\lim_{x \to \infty} \left(\frac{3x+4}{3x+1} \right)^{3-2x}$$

Вариант 6

Вычислить пределы

1.
$$\lim_{x \to 4} \frac{2x^2 - 7x - 4}{2x^2 - 13x + 20}$$

 $x^2 + 3x + 2$

2.
$$\lim_{x \to \infty} \frac{1}{2x^2 + x - 6}$$

Вариант 7

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{3x^2 + 6x - 1}{(3x - 4)^2}$$
2. $\lim_{x \to 5} \frac{x^2 - 7x + 10}{x^2 - 25}$

2.
$$\lim_{x \to 5} \frac{1}{x^2 - 25}$$

3. $\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - \sqrt{2x + 8}}$ 4. $\lim_{x \to 4} 3x^2$

4.
$$\lim_{x \to 0} \frac{3x^2}{\cos 3x - \cos x}$$

 $\lim x(\ln 2x - \ln(2x - 3))$ $x \rightarrow +\infty$

Вариант 8

Вычислить пределы 1. $\lim_{x \to 0} 4x^2 + 2x - 1$

1.
$$\lim_{x \to \infty} \frac{4x^2 + 2x - 1}{(x+2)(x-4)}$$

2.
$$\lim_{x \to 4} \frac{2x^2 - 7x - 4}{x^2 - 6x + 8}$$

3.
$$\lim_{x \to 0} \frac{\sqrt{1+2x} - \sqrt{1-x}}{2x}$$

4.
$$\lim_{x \to 0} \frac{4x^2}{\cos 2x - \cos^2 x}$$

3. $\lim_{x \to 4} \frac{\sqrt{1+2x} - 3}{\sqrt{x} \sqrt{2}}$ 4. $\lim_{x \to 4} \frac{\sqrt{x} - 3}{\sqrt{x}}$

 $x \rightarrow 01 - \cos^2 4x$

$$\lim_{x \to +\infty} (2x - 5)(\ln x - \ln(x + 3))$$

5.
$$\lim_{x \to +\infty} 2x(\ln x - \ln(x - 4))$$

Вариант 9

Вычислить пределы

1.
$$\lim_{x \to +\infty} \frac{3x^3 + 6x - 1}{x^2 + x - 4}$$

 $x^2 - 6x + 8$

2.
$$\lim_{x \to 4} \frac{1}{x^2 - 5x + 4}$$

В ариант 10 Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{2x^2 + 6x - 1}{(x+2)^2}$$

2. $\lim_{x \to 1} \frac{x^3 - 1}{1 - x^2}$

2.
$$\lim_{x \to 1} \frac{x^3 - 1}{1 - x^2}$$

Вариант 11

3.
$$\lim_{x \to 4} \frac{1-\sqrt{x-3}}{2-x\sqrt{x^2}}$$
4. $\lim_{x \to 4} \frac{1-\sqrt{x-3}}{x^2}$

4.
$$\lim_{x \to 0} \frac{x^2}{\cos 2x - \cos x}$$

5.
$$\lim_{x \to +\infty} x(\ln(x-1) - \ln(x+3))$$

5.
$$\lim_{x \to \infty} \left(1 - \frac{3}{2x}\right)^{2x - 3}$$

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{3x^4 + 6x - 1}{x^3 + 4x - 7}$$

1.
$$\lim_{x \to \infty} \frac{5x + 6x}{x^3 + 4x - 7}$$
2. $\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 5x + 6}$

3.
$$\lim_{x \to 1} \frac{x^2 - 5x + 4}{\sqrt{5 - x} - 2}$$

4.
$$\lim_{x \to 01 - \cos^2 3x} 2x \sin x$$

5.
$$\lim_{x \to \infty} \left(\underbrace{x+4}_{x+2} \right)^{1-2x}$$

Вариант 12

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{1 + 2x + 7x^3}{3 - x - 4x^3}$$

2.
$$\lim_{x \to -2} \frac{x^2 + 3x + 2}{2x^2 + x - 6}$$

Вариант 13

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{x^4 + 6x + 8}{2x_2^4 + 3x_2^2 - 7}$$

2.
$$\lim_{x \to 2} \frac{1}{x^2 - 3x + 2}$$

Вариант 14

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{3x^2 + 6x - 1}{(x + 2)(2x - 4)}$$

2. $\lim_{x \to -3} \frac{x^2 + 10x + 21}{x^2 + 8x + 15}$

2.
$$\lim_{x \to -3} \frac{1}{x^2 + 8x + 15}$$

Вариант 15

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{6000x - 1}{x^2 + 2}$$

2.
$$\lim_{x \to -2} \frac{x^2 + 7x + 10}{2x^2 + 9x + 10}$$

Вариант 16

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{2x^3 - 5x + 7}{(x + 2)(x^2 - 4)}$$

2. $\lim_{x \to 4} \frac{2x^2 - 7x - 4}{2x^2 - 13x + 20}$

2.
$$\lim_{x \to 4} \frac{1}{2x^2 - 13x + 20}$$

Вариант 17

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{x^3 + 6x - 1}{4 - x^4}$$

2.
$$\lim_{x \to 5} \frac{3x_2^2 - 14x - 5}{x - 2x - 15}$$

3.
$$\lim_{x \to 7} \frac{x^2 - 8x + 7}{2 - \sqrt{x - 3}}$$

4.
$$\lim_{x\to 0} \frac{\cos 5x - \cos 3x}{\sin^2 x}$$

3.
$$\lim_{x \to -4} \frac{\sqrt{x+12} - \sqrt{4-x}}{x^2 + 2x - 8}$$
4. $\lim_{x \to -4} \frac{\sqrt{x+12} - \sqrt{4-x}}{4x^2}$

4.
$$\lim_{x \to 0} \frac{4x^2}{\cos 4x - \cos 2x}$$

3.
$$\lim_{x \to 2} \frac{\sqrt{3x-2}-2}{\sqrt{2x+5}-3}$$

4.
$$\lim_{x\to 0} \frac{1-\cos 4x}{1-\cos 6x}$$

3.
$$\lim_{x \to 3} \frac{x^2 + x - 12}{\sqrt{x - 2} - 4 - x}$$
4. $\lim_{x \to 0} \frac{\sin 3x}{\sin 3x}$

4.
$$\lim_{x \to 0} \frac{1}{\sin 3x}$$

3.
$$\lim_{x \to 2} \frac{\sqrt{3x-2}-2}{\sqrt{2x+5}-3}$$

4.
$$\lim_{x \to 0} \frac{1 - \cos 6x}{1 - \cos 2x}$$

3.
$$\lim_{x \to -5} \frac{\sqrt{9+x} - 2}{\sqrt{4-x} - 3}$$

$$4. \lim_{x \to 0} \frac{\cos 3x - \cos 5x}{x^2}$$

5.
$$\lim_{x \to +\infty} x(\ln x - \ln(x - 4))$$

5.
$$\lim_{x \to +\infty} x(\ln 2x - \ln(2x + 3))$$

5.
$$\lim_{x \to +\infty} x(\ln 4x - \ln(4x + 3))$$

5.
$$\lim_{x \to +\infty} (x+1)(\ln x - \ln(x+3))$$

5.
$$\lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^{2x+1}$$

5.
$$\lim_{x \to +\infty} 2x(\ln(x+4) - \ln x)$$

Вариант 18

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{3x^2 + 1}{(x+2)^2}$$

$$2x^2 + 7x = 0$$

2.
$$\lim_{x \to -4} \frac{2x^2 + 7x - 4}{2x + 8}$$

Вариант 19

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{3x^4 + 6x + 1}{(x+2)^4}$$

2.
$$\lim_{x \to 3} \frac{x^2 + 4x - 21}{2x^2 - 7x + 3}$$

Вариант 20

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{5x^2 + 6x - 1}{(x+2)(x-4)}$$

2.
$$\lim_{x \to -3} \frac{x^2 - 9}{2x^3 + 54}$$

Вариант 21

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{3x^5 + 6x - 1}{3x_3 - 4x^2 - x^5}$$

$$2. \lim_{x \to -2} \frac{1}{2x+4}$$

Вариант 22

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{4x^2 + 6x - 1}{(x + 2)(x - 4)}$$

2. $\lim_{x \to 3} \frac{x^2 + 4x - 21}{x^2 - 9}$

2.
$$\lim_{x \to 3} \frac{1}{x^2 - 9}$$

Вариант 23

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{3x^3 + 6x - 1}{(x+2)(2x-4)^2}$$

2.
$$\lim_{x \to 5} \frac{x^2 - 7x + 10}{2x - 10}$$

Вариант 24

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{7x^3 + 6x - 1}{(x + 2)^3}$$

3.
$$\lim_{x \to -3} \frac{5 - \sqrt{22 - x}}{1 - \sqrt{x + 4}}$$
4. $\lim_{x \to -3} \frac{5 - \sqrt{22 - x}}{x}$

4.
$$\lim_{x \to 0} \frac{x^2}{1 - \cos 6x}$$

5.
$$\lim_{x \to +\infty} (5x+3)(\ln x - \ln(x+3))$$

3.
$$\lim_{x \to -4} \frac{3 - \sqrt{2 - 7}}{2 - \sqrt{+8}}$$

4.
$$\lim_{x \to 0} \frac{\sqrt{x+5} - \sqrt[4]{x+5}}{\sin 7 x}$$

5.
$$\lim_{x \to +\infty} (3x + 1)(\ln(x + 1) - \ln x)$$

3.
$$\lim_{x \to 5} \frac{x^2 - 25}{\sqrt{2x + 1} - \sqrt{x + 6}}$$

4.
$$\lim_{x \to 0} \frac{3x^2}{1-\cos 4x}$$

5.
$$\lim_{x \to +\infty} x(\ln 2x - \ln(2x + 3))$$

3.
$$\lim_{x \to 2} \frac{x^2 - 4}{\sqrt{5 - x} - \sqrt{x} + 1}$$
4. $\lim_{x \to 0} \frac{x^2}{\sin^2 \frac{x}{3}}$

4.
$$\lim_{x \to 0} \frac{x^2}{\sin^2 \frac{x}{3}}$$

5.
$$\lim_{x \to +\infty} x(\ln 4x - \ln(4x + 3))$$

3.
$$\lim_{x \to -2} \frac{x+2}{\sqrt{2-x-\sqrt{x+6}}}$$
4. $\lim_{x \to -2} \frac{1-\sqrt{-x^2}}{\sqrt{x+2}}$

4.
$$\lim_{x \to 0} \frac{1 - \sqrt{-x^2}}{\cos x - \cos^3 x}$$

5.
$$\lim_{x \to +\infty} x(\ln 2x - \ln(2x + 3))$$

3.
$$\lim_{x \to 0} \frac{1 - \sqrt{-x^2}}{x^2}$$

$$4. \lim_{x \to 0} \frac{\cos x - \cos^5 x}{x^2}$$

5.
$$\lim_{x \to \infty} \left(\frac{3x+1}{8x+4} \right)^{2x+1}$$

2.
$$\lim_{x \to 5} \frac{x^3 - 125}{2x - 10}$$

3.
$$\lim_{x \to 0} \frac{\sqrt{1+x^2}-1}{3x^2}$$

4.
$$\lim_{x \to 0} \frac{x \operatorname{tg}^3 x}{\cos x - \cos^3 x}$$

Вариант 25

Вычислить пределы 1.

$$\lim_{x \to \infty} \frac{3x^3 + 6x - 1}{2 - 5x - x^3}$$

2.
$$\lim_{x \to 2} \frac{4x^2 - 7x - 2}{2x - 4}$$

Вариант 26

Вычислить пределы 1

$$\lim_{x \to \infty} \frac{(3x+1)^2}{2+x+2x^2}$$

$$x^3 + 8$$

$$2. \lim_{x \to -2} \overline{x^2 - 4}$$

Вариант 27

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{2x^3 + 5x - 1}{2 - x - 4x^3}$$

2.
$$\lim_{x \to 1} \frac{x^3 - 1}{2x - 2}$$

Вариант 28

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{7x^2 + 6x - 1}{4x^2 + 6x + 3}$$

2.
$$\lim_{x \to -3} \frac{x^3 + 27}{2x^2 + x - 15}$$

Вариант 29

Вычислить пределы

1.
$$\lim_{x \to \infty} \frac{3x^3 + 6x - 1}{(2x + 2)(x^2 - 4)}$$

2.
$$\lim_{x \to 2} \frac{3x^2 - 8x + 4}{5x^2 - 14x + 8}$$

3.
$$\lim_{x \to 4} \frac{2 - \sqrt{x}}{3 - \sqrt{2x + 1}}$$

4.
$$\lim_{x \to \sqrt[4]{3}} \frac{\sqrt{1+x^2}-1}{3x^2}$$

5.
$$\lim_{x \to \infty} \left(\frac{2x}{2x+1} \right)^{1-2x}$$

3.
$$\lim_{x \to 6} \frac{x^2 - 36}{3 - \sqrt{x + 3}}$$

4.
$$\lim_{x \to 1} \frac{\sin(1-x)}{\sqrt{x}-1}$$

3.
$$\lim_{x \to 2} \frac{2 - \sqrt{3x - 2}}{x^2 - 9x + 14}$$

4.
$$\lim_{x \to 0} \frac{\sin^2 x}{\cos^7 x - \cos^3 x}$$

3.
$$\lim_{x \to 2} \frac{2 - \sqrt{3x - 2}}{x^2 - 9x + 14}$$

$$x \rightarrow 0 \cos 7 x - \cos 3x$$

3.
$$\lim_{x \to 0,5} \frac{2-4x}{\sqrt{x-0.5}\sqrt[4]{x}}$$

4.
$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{1-\cos 2x}$$

3.
$$\lim_{x \to 0} \frac{2x}{\sqrt{x+4-4-x}}$$

4.
$$\lim_{x \to 0} \frac{\sin 3x}{\sqrt{x+2-2}}$$

 $\lim (2x-5)(\ln x - \ln(x+3))$

5.
$$\lim_{x \to +\infty} (2x+3)(\ln(x+5) - \ln x)$$

5.
$$\lim_{x \to +\infty} x(\ln(x+1) - \ln(x+3))$$

5.
$$\lim_{x \to \infty} (4x + 1)(\ln x - \ln(x + 2))$$

5.
$$\lim_{x \to \infty} x(\ln(x+5) - \ln(x+3))$$

4.4 Контрольная работа №4 «Интегрирование» Вариант 1

В заданиях 1-5 вычислить интегралы, применив в 1-4- метод подстановки, в 5 - метод интегрирования по частям.

$$1.\int_{0}^{1} (5x-2)^{4} dx$$
. $2.\int_{0}^{\pi/2} \sin 3x dx$. $3.\int_{0}^{\pi/2} x \cos(x^{2}) dx$. $4.\int_{0}^{\ln 2} e^{2x-1} dx$. $5.\int_{1}^{2} (x+1) \ln x dx$. Вариант 2

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{0}^{2x} e^{2x} dx. \qquad 2.\int_{0}^{3} \frac{dx}{4x+2}. \qquad 3.\int_{e}^{3} \frac{dx}{x \ln x}. \qquad 4.\int_{1}^{5} \frac{dx}{\sqrt{5+4x}} \qquad 5.\int_{\pi}^{2} x^{2} \sin x dx. \quad .$$
Вариант 3

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1 \cdot \int_{0}^{1} \frac{dx}{1+4x^{2}} \cdot 2 \cdot \int_{1}^{2} (x^{2}-2x+3) dx. \qquad 3 \cdot \int_{0}^{1} \frac{xdx}{1+x^{4}} \cdot \int_{2}^{5} \frac{\ln^{2}x}{x} dx. \quad 5 \cdot \int_{1}^{2} x^{2} e^{x} dx.$$
Вариант 4

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$\int_{0}^{1.1/4} \frac{dx}{\sqrt{1-9x^{2}}} dx = 2.\int_{2}^{6} \sqrt{\frac{x-2}{dx}}. \qquad 3.\int_{0}^{1/2} \frac{arctg2x}{1+4x^{2}} dx. \quad 4.\int_{2}^{5} e^{x^{2}-5}xdx. \quad 5.\int_{\pi}^{2\pi} x^{2} \cos xdx. \quad .$$
Вариант 5

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{3}^{0} \frac{dx}{\sqrt{25+3x}}. \qquad 2.\int_{0}^{3} \frac{xdx}{(1-x^{2})}. \qquad 3.\int_{\pi/2}^{\pi} \cos^{2}x \sin xdx. \qquad 4.\int_{0}^{2} e^{3x} dx. \qquad 5.\int_{0}^{1} arctgxdx.$$
Вариант 6

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{1}^{2} \frac{dx}{2x-1}. \qquad 2.\int_{0}^{1} 2^{x} dx. \qquad 3.\int_{0}^{1} \frac{x^{3} dx}{1+x^{4}}. \qquad 4.\int_{2}^{4} \frac{dx}{x \ln x}. \qquad 5.\int_{0}^{2\pi} x^{2} \cos x dx.$$

Вариант 7

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{e}^{\frac{e}{2}} \frac{dx}{x \ln x}. \qquad 2.\int_{0}^{\pi/2} \sin 5x dx. \qquad 3.\int_{0}^{\pi/2} x \sin \left(x^{2}\right) dx. \quad 4.\int_{-1}^{0} \sqrt{\frac{1}{x+1}} dx. \quad 5.\int_{0}^{\pi/2} \left(x^{2}+1\right) \sin x dx.$$
Вариант 8

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{0}^{1} (2x-7)^{2} dx. \qquad 2.\int_{0}^{3} (\sqrt{2x}+\sqrt[3]{x}) dx. \qquad 3.\int_{0}^{1} xe^{x^{2}} dx. \quad 4.\int_{0}^{3} \frac{dx}{\sqrt{x+1}}. \quad 5.\int_{0}^{1} x \cdot arctgx dx$$
Вариант 9

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{0}^{\pi} \int_{0}^{2} \cos^{2} x dx. \qquad 2.\int_{2}^{3} \frac{dx}{4x^{2}-1}. \qquad 3.\int_{e}^{e^{3}} \frac{\ln^{2} x}{x} dx. \qquad 4.\int_{3}^{6} \frac{dx}{\sqrt{x-2}}. 5.\int_{0}^{\pi} x^{2} \sin x dx.$$
Вариант 10

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{0}^{1} e^{-3x} dx. \qquad 2.\int_{0}^{1} \frac{dx}{(5x-1)}. \qquad 3.\int_{0}^{\pi/2} \sin^{3}x \cos x dx. \qquad 4.\int_{0}^{\sqrt{3}/3} \frac{arctgx}{1+x^{2}} dx. \qquad 5.\int_{0}^{2} x^{3} \ln x dx.$$
Вариант 12

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

1.
$$\int_{0}^{1/2} \frac{dx}{\sqrt{1-3x^2}}$$
. 2. $\int_{2}^{6} \sqrt{x-2} dx$. 3. $\int_{0}^{4} \frac{x^3 dx}{1+x^8}$. 4. $\int_{0}^{\pi/6} e^{\sin x} \cos x dx$. 5. $\int_{\pi/2}^{2} x^2 \sin x dx$. Вариант 13

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{0}^{\pi/3} tgx dx. \qquad 2.\int_{-3}^{0} \frac{dx}{\sqrt{25+3x}}. \qquad 3.\int_{e}^{e^{2}} \frac{\ln x dx}{x}. \qquad 4.\int_{0}^{1/4} x \sin\left(x^{2}\right) dx. \quad 5.\int_{2}^{\pi} \left(x^{2}+2\right) e^{x} dx.$$
Вариант 14

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{1}^{2} \frac{dx}{2x-1}. \qquad 2.\int_{0}^{1} \frac{dx}{x^{2}+4x+5}. \qquad 3.\int_{0}^{\cos 1} \frac{\arccos x}{\sqrt{1-x^{2}}} dx. \quad 4.\int_{2}^{5} \sqrt{x-2} dx. \quad 5.\int_{-1}^{0} \operatorname{arctgx} dx.$$
Вариант 15

В заданиях 1-5 вычислить интегралы, применив в 1-4- метод непосредственного интегрирования или метод подстановки, в 5- метод интегрирования по частям.

рования или метод подстановки, в 5 — метод интегрирования по частям.

1.
$$\int_{-\pi/2}^{0} \sin \frac{x}{3} dx$$
.
2. $\int_{e}^{e^2} \frac{dx}{x \ln x}$.
3. $\int_{0}^{\infty} x \left(x^2 + 1\right)^3 dx$.
4. $\int_{0}^{\infty} \frac{dx}{x} dx$.

Вариант 16

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$\frac{\pi}{1} \int_{0}^{\pi/2} \cos^{2}x dx$$
. $2 \int_{0}^{e} \frac{dx}{x\sqrt{1-\left(\ln x\right)^{2}}}$. $3 \int_{0}^{1/2} \frac{\arcsin x}{\sqrt{1-x^{2}}} dx$. $4 \int_{0}^{1/2} \sqrt{x-3} dx$. $5 \int_{0}^{1/2} \left(x^{2}+3\right) e^{x} dx$. Вариант 17

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{0}^{\pi/2} \sin^{2}x dx. \qquad 2.\int_{-\pi/2}^{-\pi/4} \frac{\cos^{3}x dx}{\sqrt[3]{\sin x}}. \qquad 3.\int_{\ln 2}^{\ln 3} \frac{e^{x}}{e^{x}-1} dx. \quad 4.\int_{0}^{10} \sqrt{\frac{10-x}{10-x}} dx. \quad 5.\int_{0}^{\pi/2} x^{2} \sin x dx.$$
Вариант 18

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{0}^{3} \frac{dx}{1+9x^{2}} \cdot 2.\int_{0}^{2} (x^{4}-3x+1)dx \cdot 3.\int_{0}^{1} \frac{x^{2}dx}{1+x^{6}} \cdot 4.\int_{3}^{1} \frac{x+3}{\sqrt{1+x^{2}}}dx \cdot 5.\ln(1+x^{2})dx.$$

Вариант 19

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{2}^{3} \frac{dx}{3x-5}. \qquad 2.\int_{1}^{2} \frac{dx}{x^{2}+6x-1}. \qquad 3.\int_{0}^{1} \frac{arctg^{2}xdx}{1+x^{2}}. \qquad 4.\int_{3}^{7} \frac{dx}{x \ln^{2}x}. \qquad 5.\int_{0}^{\pi} (x^{2}+2)\cos xdx.$$
Bapuart 20

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{0}^{\pi/4} \sin 2t \cdot dt. \qquad 2.\int_{e}^{e_{2}^{2}} \frac{dx}{x \ln x}. \qquad 3.\int_{0}^{\sin 1} \frac{\arcsin^{2} x dx}{\sqrt{1-x^{2}}}. \qquad 4.\int_{-2}^{2} \sqrt{x+2} dx. \quad 5.\int_{0}^{\pi} x^{2} \cos x dx.$$
Вариант 21

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{2}^{3} \frac{dx}{(x-1)^{3}} \cdot \int_{\pi/18}^{2\pi/24} tg \, 6x. \qquad 3.\int_{0}^{1} x^{2} \left(x^{3}-1\right)^{4} dx. \qquad 4.\int_{0}^{1} \frac{dx}{\sqrt{5-4x}} dx. \quad 5.\int_{0}^{2} x \cdot arctgx dx.$$

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{0}^{\pi/4}\cos^{2}2xdx. \qquad 2.\int_{1}^{3}\frac{dx}{x\sqrt{-\ln^{2}x}}. \qquad 3.\int_{0}^{1}\frac{x^{2}dx}{x-7}. \qquad 4.\int_{0}^{3}\frac{1}{\sqrt{x+1}}dx. \qquad 5.\int_{0}^{\pi}x^{2}\sin xdx.$$
Вариант 23

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{0}^{1} (3x-2)^{4} dx. \qquad 2.\int_{0}^{\pi/2} \sin 5x dx. \qquad 3.\int_{0}^{\pi/2} x \cos(x^{2}) dx. \qquad 4.\int_{0}^{\ln 2} (e^{x}-1) dx. \quad 5.\int_{1}^{2} (x+2) \ln x dx.$$
Вариант 24

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{0}^{2x} e^{3x} dx. \qquad 2.\int_{0}^{3} \frac{dx}{4x+1}. \qquad 3.\int_{e}^{3} \frac{dx}{x \ln x}. \qquad 4.\int_{1}^{5} \frac{dx}{\sqrt{3+4x}} \qquad 5.\int_{\pi}^{2} (x+1)\sin x dx. \quad .$$
Banyaht 25

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5 — метод интегрирования по частям.

$$1.\int_{0}^{1} \frac{dx}{1+3x^{2}} \cdot 2.\int_{1}^{2} (x^{2}-3x+2)dx. \qquad 3.\int_{0}^{1} \frac{2xdx}{1+x^{4}} \cdot 4.\int_{2}^{5} \frac{1}{\sqrt{x-1}}dx. \quad 5.\int_{1}^{2} x^{2}e^{x}dx.$$
Вариант 26

В заданиях 1-5 вычислить интегралы, применив в 1-4 — метод непосредственного интегрирования или метод подстановки, в 5_2 — метод интегрирования по частям.

рования или метод подетановки, в
$$\frac{1}{1/2}$$
 метод интегрирования по частям.

1. $\int_{0}^{1/2} \frac{dx}{\sqrt{1-8x^2}} dx$ 2. $\int_{2}^{1} \sqrt{x-1} dx$. 3. $\int_{0}^{1} \frac{1}{1+4x^2} dx$. 4. $\int_{3}^{5} \frac{x dx}{\sqrt{x^2-2}}$ 5. $\int_{\pi}^{2\pi} x^2 \cos x dx$. .

Вариант 27

В заданиях 1-5 вычислить интегралы, применив в 1-4 – метод непосредственного интегрирования или метод подстановки, в 5 – метод интегрирования по частям.

$$1.\int_{-3}^{0} \frac{dx}{\sqrt{25+3x}}. \qquad 2.\int_{0}^{\pi/3} tgx dx. \qquad 3.\int_{\pi/2}^{\pi} \cos^{2}x \sin x dx. \qquad 4.\int_{0}^{2} \sqrt{4-x} \ dx. \qquad 5.\int_{0}^{1} arctgx dx.$$
 Вариант 28

В заданиях 1-5 вычислить интегралы, применив в 1-4 – метод непосредственного интегрирования или метод подстановки, в 5 – метод интегрирования по частям.

$$1.\int_{1}^{2} \frac{dx}{2x-1}. \qquad 2.\int_{0}^{1} 2^{x} dx. \qquad 3.\int_{0}^{1} \frac{x^{3} dx}{1+x}. \qquad 4.\int_{2}^{4} \frac{dx}{\sqrt[3]{x-1}}. \qquad 5.\int_{0}^{2} x_{2} \cos x dx.$$
Вариант 29

В заданиях 1-5 вычислить интегралы, применив в 1-4 – метод непосредственного интегрирования или метод подстановки, в 5 – метод интегрирования по частям.

рования или метод подетановки, в 3 – метод интегрирования по частям.

1.
$$\int_{e}^{2} \frac{dx}{x \ln x}$$
. 2. $\int_{0}^{\pi/2} \sin 5x dx$. 3. $\int_{0}^{\pi/2} x \sin(x^2) dx$. 4. $\int_{0}^{0} \sqrt{\frac{1}{x+1}} dx$. 5. $\int_{0}^{\pi/2} (x^2+1) \sin x dx$. Вариант 30

В заданиях 1-5 вычислить интегралы, применив в 1-4 – метод непосредственного интегрирования или метод подстановки, в 5 – метод интегрирования по частям.

$$1.\int_{0}^{1} (2x-7)^{2} dx. \qquad 2.\int_{0}^{3} (\sqrt{2x}+\sqrt[3]{x}) dx. \qquad 3.\int_{0}^{1} xe^{x^{2}} dx. \qquad 4.\int_{0}^{3} \frac{dx}{\sqrt{x+1}}. \qquad 5.\int_{0}^{1} xarctgx dx$$

4.5 Контрольная работа №5 «Случайные величины»

Задания для вариантов 1-10 (общие задания).

1. Сократите дробь

a)
$$\frac{(n+1)!}{n!}$$
; 6) $\frac{(n+1)!(n+3)}{(n+4)!}$.

a)
$$\frac{(n+1)!}{n!}$$
; б) $\frac{(n+1)!(n+3)}{(n+4)!}$.
a) Найти: а) C_{15}^3 ; б) $\frac{A_8^4 - A_8^3}{A_7^3 - A_7^2}$.

- 3. Сколько четных четырехзначных чисел, в которых цифры не повторяются, можно записать с помощью цифр 1, 2, 3, 7?
- 4. В 1 группе учатся 25 студентов, во 2 20 студентов, а в 3 18 студентов. Для работы на садовом участке надо выделить трех студентов из 1 группы, двух – из 2 и одного – из 3. Сколько существует способов выбора студентов для работы на садовом участке?
- 5. Сколькими способами можно распределить 12 различных книг между четырьмя студентами?

Задания по вариантам:

Вариант 1:

- 6. Вероятность изготовления небракованного изделия равна 0,93. Сделано три изделия. Найти вероятность того, что:
 - а) все изделия не бракованные;
 - б) два изделия не бракованные;
 - в) только одно изделие небракованное;

- г) хотя бы одно изделие небракованное;
- д) все изделия бракованные.
- 7. Старшине роты необходимо составить список из 9 солдат в любом порядке. Сколько различных списков он может составить?

Вариант 2

- 6. В начале месяца в аудиторию повесили два новых светильника. Вероятность того, что светильник не выйдет из строя в течение месяца, равна 0,84. Найти вероятность того, что к концу месяца выйдут из строя: а) оба светильника; б) только один светильник; в) хотя бы один светильник; г) ни одного светильника.
- 7. Сколькими способами можно переставить буквы в слове АРБУЗ?

Вариант 3

- 6. В городе 10% всех жителей являются сторонниками одной и той же политической партии. Какова вероятность того, что среди трех наугад выбранных жителей города окажутся сторонниками этой партии: 1) только двое;2) хотя бы один; 3) все; 4) только один?
- 7. Сколькими способами можно выбрать две монеты из трех: 1,2,3 копейки?

Вариант 4

- 6. Вероятность выпуска стандартной упаковки составляет 0,95. Найти вероятность того, что из трех сделанных упаковок стандартными окажутся: а) все три; б) только две; в) лишь одна; г) хотя бы одна; д) ни одной упаковки.
- 7. Сколько различных 4-х буквенных сочетаний можно составить из слова КАНДЕЛЯБР?

Вариант 5

- 6. В магазин поступило 14 телевизоров, из которых 5 требуют дополнительной регулировки. Какова вероятность того, что среди двух отобранных случайным образом, для продажи телевизоров потребуют регулировки: а) оба телевизора; б) хотя бы один телевизор?
- 7. В разрезной азбуке было составлено слово КНИГА. Мальчик случайно уронил эти буквы. Сколькими способами он может их составить?

Вариант 6

- 6. Из аэровокзала отправились два автобуса-экспресса. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что: а) оба автобуса прибудут вовремя; б) оба автобуса опоздают;
 - в) только один автобус прибудет вовремя; г) хотя бы один автобус прибудет вовремя.
- 7. Из группы в 20 голов крупного рогатого скота, предназначенного для откорма, для контрольного определения среднесуточного привеса отбирается группа из 8 животных. Сколькими способами это можно сделать?

Вариант 7

- 6. Студент знает 40 из 50 вопросов программы. Найти вероятность того, что студент знает: а) два вопроса, содержащиеся в билете; б) только один вопрос; в) хотя бы один вопрос.
- 7. Из 30-ти человек староста группы должен отобрать 10 человек для уборки свеклы в колхозе. Сколько различных списков он может составить?

Вариант 8

6. В офисе работают три кондиционера. Для каждого кондиционера вероятность выхода из строя составляет 0,8. Найти вероятность того, что выйдут из строя: а) два вентилятора; б) хотя бы один вентилятор; в) все вентиляторы.

7. В ящике 20 шаров, среди которых 12 белых, а остальные – голубые. Отбирают наугад 2 шара. Сколько существует вариантов того, что они белые?

Вариант 9

- 6. В среднем 20% студентов сдают экзамен по математике на "отлично". Найти вероятность того, что из пяти случайно выбранных студентов оценку "отлично" получат: а) все студенты; б) хотя бы один студент.
- 7. В урне 16 шаров, среди которых 9 белых, остальные красные. Отбирают наугад 3 шара. Сколько вариантов того, что два из них окажутся красными?

Вариант 10

- 6. Из 15 билетов выигрышными являются четыре. Какова вероятность того, что среди взятых наугад трех билетов будет: а) два выигрышных; б) хотя бы один выигрышный?
- 7. На фабрике по пошиву флагов имеются следующие цвета ткани: красный, белый, голубой, синий, желтый. Сколько можно сшить 3-х цветных флагов с горизонтальными полосами при условии, что одинаковых быть не должно?

Задания для вариантов 11-20 (общие задания).

- 1. Сократите дробь
- a) $\frac{n!}{(n+2)!}$; б) $\frac{(n+3)!}{n!(n+2)}$. 2. Найти a) A_{15}^3 ; б) $\frac{C_6^3 C_6^2}{A^2}$.
- 3. Сколько четных четырехзначных чисел, в которых цифры не повторяются, можно записать с помощью цифр 1, 2, 3, 4?
- 4. В отделе работают 9 ведущих и 12 старших научных сотрудников. В командировку надо послать двух ведущих и трех старших научных сотрудников. Сколькими способами может быть сделан выбор сотрудников, которых надо послать в командировку?
- 5. Сколько разных стартовых шестерок можно образовать из 10 волейболистов?

Задания по вариантам:

Вариант 11

- 6. На заочном отделении ВУЗа 80% всех студентов работают по специальности. Какова вероятность того, что из трёх отобранных случайным образом студентов по специальности работают: а) два; б) хотя бы один студент?
- 7. Два стрелка сделали по одному выстрелу по мишени. Известно, что вероятность попадания в мишень для одного из стрелков равна 0.6, а для другого -0.7. Найти вероятность того, что хотя бы один из стрелков попадет в мишень.

Вариант 12

- 6. Из партии изделий для контроля выбирают наугад пять изделий, и каждое из них проверяют. Если из этих пяти изделий бракованными будут не более двух, то партия принимается, в противном случае вся партия подвергается сплошному контролю. Какова вероятность того, что партия будет принята без сплошного контроля, если вероятность для каждого изделия в партии быть бракованным равна 0,1?
- 7. Ящик содержит 90 годных и 10 дефектных деталей. Сборщик последовательно достает из ящика 10 деталей. Найти вероятность того, что среди взятых деталей хотя бы одна дефектная.

Вариант 13

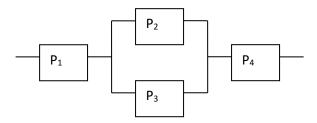
б. Вероятность того, что каждый из четырёх кассиров занят обслуживанием покупателей, равна 0,9. Найти вероятность того, что в данный момент: а) хотя бы один из кассиров занят обслуживанием; б) все кассиры заняты обслуживанием покупателей.

7. Два охотника сделали по одному выстрелу по зайцу. Известно, что вероятность попадания для одного из них равна 0.6, а для другого -0.7. Найти вероятность того, что только один из охотников попадет в зайца.

Вариант 14

- 6. Имеется 12 единиц товара в одинаковых упаковках. Известно, что четыре единицы первого сорта. Вычислить вероятность того, что среди двух наугад отобранных друг за другом единиц товара: а) хотя бы одна первого сорта; б) только одна первого сорта.
- 7. Вероятность попадания в мишень при одном выстреле для первого стрелка равна p, а для второго p p 0,7. Известно, что вероятность попадания при одном выстреле обоих стрелков равна p 0,35. Найти p .

Вариант 15


- 6. Определить вероятность того, что в семье, имеющей троих детей, будут: а) три мальчика; б) не менее одной девочки. Вероятность рождения мальчика принять равной 0,51.
- 7. Охотник выстрелил 3 раза по удаляющейся цели. Вероятность попадания в нее в начале стрельбы равна 0,8; а после каждого выстрела уменьшается на 0,1. Найти вероятность того, что он попадет хотя бы один раз.

Вариант 16

- 6. Из 40 вопросов курса высшей математики студент знает 32. На экзамене ему случайным образом предлагается два вопроса. Какова вероятность того, что студент ответит правильно: а) хотя бы на один вопрос; б) на оба вопроса?
- 7. В ящике 10 деталей, среди которых 7 окрашенных. Сборщик наудачу достает 3 детали. Найти вероятность того, что среди взятых деталей не более двух окрашенных.

Вариант 17

- 6. Среди 20 лотерейных билетов имеется шесть выигрышных. Какова вероятность того, что среди двух взятых наугад билетов окажется: а) хотя бы один выигрышный; б) хотя бы один не выигрышный?
- 7. Найти вероятность того, что схема будет работать,

если заданы вероятности работы каждого независимо работающего устройства: $p_1 = 0.3$, $p_2 = 0.4$, $p_3 = 0.6$, $p_4 = 0.5$.

Вариант 18

- 6. Прибор состоит из двух узлов, которые во время работы независимо друг от друга могут выходить из строя. Вероятность безотказной работы первого узла в течение гарантийного срока равна 0,75, а второго 0,8. Найти вероятность того, что в течение гарантийного срока прибор: а) будет работать исправно; б) выйдет из строя.
- 7. Студент успел подготовить к экзамену 20 вопросов из 30. Какова вероятность того, что из 3 наудачу выбранных вопросов студент знает не менее двух.

Вариант 19

- 6. В начале года в лабораторию поставили два новых ксерокса. Вероятность того, что ксерокс не выйдет из строя в течение года, равна 0,45. Найти вероятность того, что к концу года выйдут из строя: а) оба ксерокса; б) только один; в) хотя бы один; г) ни одного ксерокса.
- 7. Экзаменационный билет содержит 3 вопроса. Вероятность того, что студент ответит на первый и второй вопросы билета, равна 0.9, на третий -0.8. Найти вероятность того, что студент сдаст экзамен, если для этого надо ответить на все вопросы.

Вариант 20

- 6. Вероятность того, что каждый из трёх кассиров занят обслуживанием покупателей, равна соответственно 0,7; 0,8 и 0,9. Найти вероятность того, что в данный момент заняты обслуживанием покупателей: а) все кассиры; б) два кассира; в) только один кассир; г) хотя бы один кассир.
- 7. В команде из 12 спортсменов 5 мастеров спорта. По жеребьевке из команды выбирают 3 спортсменов. Какова вероятность того, что среди выбранных спортсменов не более двух мастеров спорта?

Задания для устной сдачи:

- 1. Определение матриц, их сравнение, транспонирование, умножение на число, сумма и разность, произведение матриц и свойства таких операций.
- 2. Определители второго и третьего порядка: правила вычисления и основные свойства.
- 3. Обратная матрица: определение, теорема о существовании обратной матрицы (способ нахождения A⁻¹), проверка полученного результата.
 - 4. Система линейных уравнений, определение ее решения. Метод Крамера нахождения решений линейной системы. Теорема Крамера.
 - 5. Матричная запись линейной системы. Матричный метод нахождения решения линейной системы (использование обратной матрицы).
 - 6. Неопределенный интеграл и первообразная функции.
 - 7. Основные свойства неопределенного интеграла.
 - 8. Таблица основных интегралов.
 - 9. Основные методы интегрирования: непосредственное, замена переменной, интегрирование по частям.
 - 10. Интегрирование рациональных дробей.
 - 11. Интегрирование иррациональных функций.
 - 12. Интегрирование тригонометрических функций.
 - 13. Определенный интеграл и его основные свойства.
 - 14. Формула Ньютона-Лейбница.
 - 15. Метод подстановки и интегрирование по частям в определенном интеграле.
 - 16. Вычисление площадей фигур.
 - 17. Вычисление длин дуг кривых.
 - 18. Вычисление объемов тел вращения.
 - 19. Определение вероятности. Свойства.
 - 20. Классическое определение вероятности.
 - 21. Основные теоремы в теории вероятностей.
 - 22. Элементы комбинаторики.
 - 23. Формула полной вероятности, Байеса, Бернулли.
 - 24. Случайные величины.
 - 25. Числовые характеристики случайных величин.